Selected Publications

Here lists a part of my publications on kernels, adversarial learning and out-of-distribution detection. You can find a full collection of my articles on my Google Scholar profile.

Preprint


Beyond Perceptual Distances: Rethinking Disparity Assessment for Out-of-Distribution Detection with Diffusion models. arxiv
Kun Fang, Qinghua Tao, Zuopeng Yang, Xiaolin Huang, Jie Yang

On Multi-head Ensemble of Smoothed Classifiers for Certified Robustness. arxiv
Kun Fang, Qinghua Tao, Yingwen Wu, Tao Li, Xiaolin Huang, Jie Yang


Journals & Conferences


Kernel PCA for Out-of-Distribution Detection
Kun Fang, Qinghua Tao, Kexin Lv, Mingzhen He, Xiaolin Huang, Jie Yang
Conference on Advances in Neural Information Processing Systems (NeurIPS), 2024. arxiv, code

Revisiting Deep Ensemble for Out-of-Distribution Detection: A Loss Landscape Perspective
Kun Fang, Qinghua Tao, Xiaolin Huang, Jie Yang
International Journal of Computer Vision (IJCV), 2024. journal, arxiv, code

Towards Robust Neural Networks via Orthogonal Diversity
Kun Fang, Qinghua Tao, Yingwen Wu, Tao Li, Jia Cai, Feipeng Cai, Xiaolin Huang, Jie Yang
Pattern Recognition, 2024. journal, arxiv, code

End-to-end Kernel Learning via Generative Random Fourier Features.
Kun Fang, Fanghui Liu, Xiaolin Huang, Jie Yang
Pattern Recognition, 2023. journal, arxiv, code


Papers I have co-authored


Boosting Certified Robustness via An Expectation-based Similarity Regularization.
Jiawen Li, Kun Fang, Xiaolin Huang, Jie Yang
Image and Vision Computing, 2024. journal

Improving Adversarial Robustness through A Curriculum-guided Reliable Distillation.
Jiawen Li, Kun Fang, Xiaolin Huang, Jie Yang
Computers & Security, 2023. journal, code

Improving the Adversarial Robustness of Quantized Neural Networks via Exploiting the Feature Diversity.
Tianshu Chu, Kun Fang, Jie Yang, Xiaolin Huang
Pattern Recognition Letters, 2023. journal

Unifying Gradients to Improve Real-world Robustness for Deep Networks.
Yingwen Wu, Sizhe Chen, Kun Fang, Xiaolin Huang
ACM Transactions on Intelligent Systems and Technology (ACM TIST), 2023. journal, arxiv, code

Subspace Adversarial Learning.
Tao Li, Yingwen Wu, Sizhe Chen, Kun Fang, Xiaolin Huang
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. conference, arxiv, code